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Types as ∞-groupoids

Homotopy type theory starts from a novel interpretation of a type as a
(the homotopy type of) a space or an ∞-groupoid.

Why do we want this? It justifies extensionality principles like:

1 function extensionality.

2 univalence.

3 propositional truncation.

4 higher-inductive types.

An interpretation of type theory in which we interpret types as
∞-groupoids should validate these principles.

Question

Why is that so? And is this also true constructively?
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What is an ∞-groupoid?
There are many possible definitions of an ∞-groupoid; but the most
popular one (among mathematicians) is that of a Kan complex.

Definition (Kan fibration)

A map f : Y → X of simplicial sets is a Kan fibration if every solid
commutative square

Λn
k Y

∆n X

f

has a (not necessarily unique) dotted filler as shown. A simplicial set Y is
a Kan complex if Y → 1 is a Kan fibration.

In classical maths being a Kan fibration is understood as a property.
However, let us say that a map f : Y → X is a functional Kan fibration if
it comes equipped with an explicit choice of lifts for any commutative
square as the one above.
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The simplicial sets model

Theorem (Voevodsky)

The category of simplicial sets carries a model of type theory in which Kan
fibrations interpret dependent types. In this model function extensionality
and univalence hold.

Theorem (Kan-Quillen)

The category of simplicial sets carries a model structure.

How constructive is this?

Simon Henry has given a constructive proof of the existence of the
Kan-Quillen model structure. This almost leads to a constructive model of
HoTT (see work with Gambino, Sattler and Szumi lo).

Two issues remain:
1 Π-types
2 Coherence issues
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Uniformity to the rescue?
Can we do better by imposing uniformity conditions as in the work on
cubical type theory?

Work by Gambino and Sattler on uniform Kan
fibrations in simplicial sets suggests the answer could be yes!

In this talk I will discuss another notion of a uniform Kan fibration: that of
an effective Kan fibration. This notion was introduced in a book written
together with Eric Faber.

Lecture Notes in Mathematics 2321

Benno van den Berg
Eric Faber

Effective Kan 
Fibrations 
in Simplicial 
Sets

The contents of this talk are mostly based on the preprint Examples and
cofibrant generation of effective Kan fibration in simplicial sets,
arXiv2402.10568, written together with Freek Geerligs.
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Maps functional Kan fibrations lift against
If f lifts against g , then f also lifts against any pushout of g .

• • •

• • •
g f

p

If f lifts against g and h, then f also lifts against h ◦ g .

• •

•

• •

g

f

h

A sequence S0 ⊆ S1 ⊆ . . . ⊆ Sk of subobjects of ∆n where each Si ⊆ Si+1

is a pushout of a horn inclusion will be called a horn pushout sequence.
We conclude: each functional Kan fibration has induced lifts against
inclusions S ⊆ T between subobjects of ∆n if S and T are given as the
endpoints of a horn pushout sequence.
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Effective Kan fibrations
What happens if we pull back a horn inclusion along a degeneracy?

S Λn
k

∆n+1 ∆nsi

y

The inclusion S ⊆ ∆n+1 can be written as the composition of a horn
pushout sequence. This decomposition is not unique; however, the induced
lift against any functional Kan fibration will be.

Definition (Effective Kan fibration)

A functional Kan fibration f : Y → X is an effective Kan fibration if its
induced lifts make any diagram of the following form commute:

S Λn
k Y

∆n+1 ∆n X

f

si

y

7 / 13



Effective Kan fibrations
What happens if we pull back a horn inclusion along a degeneracy?

S Λn
k

∆n+1 ∆nsi

y

The inclusion S ⊆ ∆n+1 can be written as the composition of a horn
pushout sequence. This decomposition is not unique; however, the induced
lift against any functional Kan fibration will be.

Definition (Effective Kan fibration)

A functional Kan fibration f : Y → X is an effective Kan fibration if its
induced lifts make any diagram of the following form commute:

S Λn
k Y

∆n+1 ∆n X

f

si

y

7 / 13



Effective Kan fibrations
What happens if we pull back a horn inclusion along a degeneracy?

S Λn
k

∆n+1 ∆nsi

y

The inclusion S ⊆ ∆n+1 can be written as the composition of a horn
pushout sequence. This decomposition is not unique; however, the induced
lift against any functional Kan fibration will be.

Definition (Effective Kan fibration)

A functional Kan fibration f : Y → X is an effective Kan fibration if its
induced lifts make any diagram of the following form commute:

S Λn
k Y

∆n+1 ∆n X

f

si

y

7 / 13



Properties of effective Kan fibrations
We have established the following properties of effective Kan fibrations:

Classical correctness: Using classical logic and choice, one can show that
every Kan fibration can be equipped with the structure of an
effective Kan fibration (jww Eric Faber).

Exponentials: If A is an effective Kan complex, then so is AB for any
simplicial set B. More generally, effective Kan fibrations are
closed under Π (jww Eric Faber).

Other type constructors: Effective Kan fibrations interpret the following
type constructors: Π,Σ,+,×, 0, 1,N. We have a slightly
ineffective proof for W as well (jww Shinichiro Tanaka).

Other examples: Simplicial groups (more generally, simplicial Malcev
algebras) are Kan (jww Freek Geerligs).

A big open problem

We can construct universes using the Hofmann-Streicher construction.
However, I do not know if they are effectively Kan or satisfy univalence.
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Algebraic weak factorisation systems

Theorem (Freek Geerligs & BvdB)

The effective Kan fibrations are cofibrantly generated by a small double
category.

Theorem (Bourke & Garner)

If a class of maps in a presheaf category is cofibrantly generated by a small
double category, then it is the class of right maps in an algebraic weak
factorisation system (AWFS).

The proof given by Bourke and Garner is classical; however, I am
convinced that it can be made constructive in the case at hand (joint work
in progress with Paul Seip and John Bourke).

Ultimately I hope the effective Kan fibrations can be the fibrations in an
algebraic model structure and the dependent types in a model of
homotopy type theory (constructively!).
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Extra slides

10 / 13



Double categories
The definition of an effective Kan fibration can be phrased in the language
of double categories.

Definition (double category)

A double category consists of:

Objects.

Horizontal arrows • • between these objects.

Vertical arrows
•

•

between these objects.

Squares
• •

• •

which can be composed horizontally and vertically.

Example

If C is a category, then there is a double category Sq(C) whose horizontal
and vertical arrows are the morphisms of C, while its squares are the
commutative squares in C.
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Lifting against double categories
Let L be a double category and L : L→ Sq(C) be a double functor. If
f : Y → X is a morphism in C, then a right lifting structure against L is a
function which assigns to each vertical morphism g in L and each square
(u, v) : Lg → f in Sq(C) a lift φ = φg (u, v) as shown:

• •

• •

u

Lg f

v

φ

These lifts are required to satisfy two compatibility conditions, a horizontal
and a vertical one, which can be depicted as follows:

• • •

• • •
Lg ′

u

Lg f

v

• •

•

• •

u

Lg

f

Lh

v
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A double category for effective Kan fibrations
Let L0 be the following double category:

Objects are cofibrant sieves S ⊆ ∆n.

Horizontal morphisms are pullback squares
S T

∆n ∆mα

.

Vertical morphisms are horn pushout sequences S0 ⊆ S1 ⊆ . . . ⊆ Sk .

A square from S0 ⊆ S1 ⊆ . . . ⊆ Sk ⊆ ∆n to
T0 ⊆ T1 ⊆ . . . ⊆ Tl ⊆ ∆m is given by a map α : ∆n → ∆m and a
monotone function f : {0, . . . , l} → {0, . . . ,m} such that
f (0) = 0, f (l) = k and α∗Ti = Sf (i). Such a square is a face or
degeneracy square if α is a face or degeneracy map.

The double category L is defined in the same way, but each square is an
explicit composition of face and degeneracy squares.

Theorem (Freek Geerligs & BvdB)

A map is an effective Kan fibration iff it has a right lifting structure
against the double category L.
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